Find the values of k for each of the quadratic equations, so that they have two equal roots. 2x2 + kx + 3 = 0

Asked by Abhisek | 1 year ago |  165

##### Solution :-

2x2 + kx + 3 = 0

Comparing the given equation with ax2 + bx + c = 0, we get,

a = 2, b = k and c = 3

As we know, Discriminant = b2 – 4ac

= (k)2 – 4(2) (3)

= k2 – 24

For equal roots, we know,

Discriminant = 0

k2 – 24 = 0

k2 = 24

k = $$±\sqrt{24}= ±2\sqrt{6}$$

Answered by Pragya Singh | 1 year ago

### Related Questions

#### A natural number when increased by 12 equals 160 times its reciprocal. Find the number.

A natural number when increased by 12 equals 160 times its reciprocal. Find the number.

#### Find a natural number whose square diminished by 84 is equal to thrice of 8 more than the given number.

Find a natural number whose square diminished by 84 is equal to thrice of 8 more than the given number.

#### The numerator of a fraction is 3 less than the denominator. If 2 is added to both the numerator

The numerator of a fraction is 3 less than the denominator. If 2 is added to both the numerator and the denominator, then the sum of the new fraction and the original fraction is $$\dfrac{29}{20}$$ Find the original fraction.