Is it possible to design a rectangular mango grove whose length is twice its breadth, and the area is $$800m^2$$? If so, find its length and breadth.

Asked by Abhisek | 1 year ago |  199

##### Solution :-

Let the breadth of mango grove be l.

Length of mango grove will be 2l.

Area of mango grove = (2l) (l)= 2l2

2l= 800

l$$\dfrac{800}{2}$$ = 400

l– 400 =0

Comparing the given equation with ax2 + bx + c = 0, we get

a = 1, b = 0, c = 400

As we know, Discriminant = b2 – 4ac

= (0)2 – 4 × (1) × ( – 400) = 1600

Here, b2 – 4ac > 0

Thus, the equation will have real roots. And hence, the desired rectangular mango grove can be designed.

l = ±20

As we know, the value of length cannot be negative.

Therefore, breadth of mango grove = 20 m

Length of mango grove = 2 × 20 = 40 m

Answered by Pragya Singh | 1 year ago

### Related Questions

#### A natural number when increased by 12 equals 160 times its reciprocal. Find the number.

A natural number when increased by 12 equals 160 times its reciprocal. Find the number.

#### Find a natural number whose square diminished by 84 is equal to thrice of 8 more than the given number.

Find a natural number whose square diminished by 84 is equal to thrice of 8 more than the given number.

#### The numerator of a fraction is 3 less than the denominator. If 2 is added to both the numerator

The numerator of a fraction is 3 less than the denominator. If 2 is added to both the numerator and the denominator, then the sum of the new fraction and the original fraction is $$\dfrac{29}{20}$$ Find the original fraction.