Given sec θ = $$\dfrac{13}{12}$$ Calculate all other trigonometric ratios

Asked by Abhisek | 1 year ago |  110

##### Solution :-

We know that sec function is the reciprocal of the cos function which is equal to the ratio of the length of the hypotenuse side to the adjacent side

Let us assume a right angled triangle ABC, right angled at B

sec θ =$$\dfrac{13}{12}$$

$$\dfrac{Hypotenuse}{Adjacent \;side}=\dfrac{AC}{AB}$$

Let AC be 13k and AB will be 12k

Where, k is a positive real number.

According to the Pythagoras theorem, the squares of the hypotenuse side is

equal to the sum of the squares of the other two sides of a right angle triangle and we get,

AC2=AB+ BC2

Substitute the value of AB and AC

(13k)2= (12k)2 + BC2

169k2= 144k2 + BC2

169k2= 144k2 + BC2

BC2 = 169k2 – 144k2

BC2= 25k2

Therefore, BC = 5k

Now, substitute the corresponding values in all other trigonometric ratios

So,

Sin θ = Opposite Side/Hypotenuse = $$\dfrac{BC}{AC} =\dfrac{5}{13}$$

Cos θ = Adjacent Side/Hypotenuse = $$\dfrac{AB}{AC} =\dfrac{12}{13}$$

tan θ = Opposite Side/Adjacent Side = $$\dfrac{BC}{AB} =\dfrac{5}{12}$$

Cosec θ = Hypotenuse/Opposite Side = $$\dfrac{AC}{BC} =\dfrac{13}{5}$$

cot θ = Adjacent Side/Opposite Side = $$\dfrac{AB}{BC} =\dfrac{12}{5}$$

Answered by Pragya Singh | 1 year ago

### Related Questions

#### Prove the sinθ sin (90° – θ) – cos θ cos (90° – θ) = 0

Prove the sinθ sin (90° – θ) – cos θ cos (90° – θ) = 0

#### Prove that sin 48° sec 48° + cos 48° cosec 42° = 2

Prove that sin 48° sec 48° + cos 48° cosec 42° = 2

#### Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1

Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1

#### Evaluate the 2sin 3x = \sqrt{3}

Evaluate the $$2sin 3x = \sqrt{3}$$

#### Evalute the following: sin 20°/ cos 70°

Evalute the following:

(i) $$\dfrac{sin 20°}{ cos 70°}$$

(ii) $$\dfrac{ cos 19°}{ sin 71°}$$

(iii) $$\dfrac{sin 21°}{ cos 69°}$$

(iv) $$\dfrac{tan 10°}{ cot 80°}$$

(v) $$\dfrac{sec 11°}{ cosec 79°}$$