In ∆ PQR, right-angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P

Asked by Pragya Singh | 1 year ago |  169

1 Answer

Solution :-

In a given triangle PQR, right angled at Q, the following measures are

PQ = 5 cm

PR + QR = 25 cm

Now let us assume, QR = x

PR = 25-QR

PR = 25- x

According to the Pythagorean Theorem,

PR2 = PQ2 + QR2

Substitute the value of PR as x

(25- x) 2 = 5+ x2

252 + x2 – 50x = 25 + x2

625 + x2-50x -25 – x= 0

-50x = -600

x= \( \dfrac{ -600}{-50} \)

x = 12 = QR

Now, find the value of PR

PR = 25- QR

Substitute the value of QR

PR = 25-12

PR = 13

Now, substitute the value to the given problem

(1) sin p = \( \dfrac{Opposite \;side}{Hypotenuse}=\dfrac{QR}{PR}=\dfrac{12}{13}\)

(2) Cos p = \( \dfrac{Adjacent \;side}{Hypotenuse}=\dfrac{ PQ}{PR}=\dfrac{ 5}{13}\)

(3) tan p = \( \dfrac{Opposite \;side}{Adjacent \;side}=\dfrac{QR}{PQ}=\dfrac{12}{5}\)

Answered by Abhisek | 1 year ago

Related Questions

Evalute the following:

(i) \( \dfrac{sin 20°}{ cos 70°}\)

(ii) \(\dfrac{ cos 19°}{ sin 71°}\)

(iii) \( \dfrac{sin 21°}{ cos 69°}\)

(iv) \( \dfrac{tan 10°}{ cot 80°}\)

(v) \( \dfrac{sec 11°}{ cosec 79°}\)

Class 10 Maths Introduction to Trigonometry View Answer