Evaluate the following: sin 60° cos 30° + sin 30° cos 60°

Asked by Pragya Singh | 1 year ago |  92

##### Solution :-

First, find the values of the given trigonometric ratios

sin 30° = $$\dfrac{1}{2}$$

cos 30° = $$\dfrac{\sqrt{3}}{2}$$

sin 60° = $$\dfrac{3}{2}$$

cos 60°= $$\dfrac{1}{2}$$

Now, substitute the values in the given problem

sin 60° cos 30° + sin 30° cos 60°

$$\dfrac{\sqrt{3}}{2}$$ × $$\dfrac{\sqrt{3}}{2}$$ + ($$\dfrac{1}{2}$$) ×($$\dfrac{1}{2}$$

= $$\dfrac{3}{4}$$+$$\dfrac{1}{4}$$ =$$\dfrac{4}{4}$$ =1

Answered by Abhisek | 1 year ago

### Related Questions

#### Prove the sinθ sin (90° – θ) – cos θ cos (90° – θ) = 0

Prove the sinθ sin (90° – θ) – cos θ cos (90° – θ) = 0

#### Prove that sin 48° sec 48° + cos 48° cosec 42° = 2

Prove that sin 48° sec 48° + cos 48° cosec 42° = 2

#### Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1

Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1

#### Evaluate the 2sin 3x = \sqrt{3}

Evaluate the $$2sin 3x = \sqrt{3}$$

#### Evalute the following: sin 20°/ cos 70°

Evalute the following:

(i) $$\dfrac{sin 20°}{ cos 70°}$$

(ii) $$\dfrac{ cos 19°}{ sin 71°}$$

(iii) $$\dfrac{sin 21°}{ cos 69°}$$

(iv) $$\dfrac{tan 10°}{ cot 80°}$$

(v) $$\dfrac{sec 11°}{ cosec 79°}$$