Evaluate the following: 2 tan2 45° + cos2 30° – sin2 60

Asked by Pragya Singh | 1 year ago |  104

##### Solution :-

2 tan2 45° + cos2 30° – sin2 60

We know that, the values of the trigonometric ratios are:

sin 60° = $$\dfrac{\sqrt{3}}{2}$$

cos 30° = $$\dfrac{\sqrt{3}}{2}$$

tan 45° = 1

Substitute the values in the given problem

2 tan2 45° + cos2 30° – sin2 60

= 2(1)$$(\dfrac{\sqrt{3}}{2})^2$$-($$\dfrac{\sqrt{3}}{2}$$)2

2 tan2 45° + cos2 30° – sin2 60 = 2 + 0

2 tan2 45° + cos2 30° – sin2 60 = 2

Answered by Abhisek | 1 year ago

### Related Questions

#### Prove the sinθ sin (90° – θ) – cos θ cos (90° – θ) = 0

Prove the sinθ sin (90° – θ) – cos θ cos (90° – θ) = 0

#### Prove that sin 48° sec 48° + cos 48° cosec 42° = 2

Prove that sin 48° sec 48° + cos 48° cosec 42° = 2

#### Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1

Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1

#### Evaluate the 2sin 3x = \sqrt{3}

Evaluate the $$2sin 3x = \sqrt{3}$$

#### Evalute the following: sin 20°/ cos 70°

Evalute the following:

(i) $$\dfrac{sin 20°}{ cos 70°}$$

(ii) $$\dfrac{ cos 19°}{ sin 71°}$$

(iii) $$\dfrac{sin 21°}{ cos 69°}$$

(iv) $$\dfrac{tan 10°}{ cot 80°}$$

(v) $$\dfrac{sec 11°}{ cosec 79°}$$