Evaluate the following: 2 tan2 45° + cos2 30° – sin2 60

Asked by Pragya Singh | 1 year ago |  104

1 Answer

Solution :-

2 tan2 45° + cos2 30° – sin2 60

We know that, the values of the trigonometric ratios are:

sin 60° = \( \dfrac{\sqrt{3}}{2}\)

cos 30° = \( \dfrac{\sqrt{3}}{2}\)

tan 45° = 1

Substitute the values in the given problem

2 tan2 45° + cos2 30° – sin2 60 

= 2(1)\( (\dfrac{\sqrt{3}}{2})^2\)-(\( \dfrac{\sqrt{3}}{2}\))2

2 tan2 45° + cos2 30° – sin2 60 = 2 + 0

2 tan2 45° + cos2 30° – sin2 60 = 2

Answered by Abhisek | 1 year ago

Related Questions

Evalute the following:

(i) \( \dfrac{sin 20°}{ cos 70°}\)

(ii) \(\dfrac{ cos 19°}{ sin 71°}\)

(iii) \( \dfrac{sin 21°}{ cos 69°}\)

(iv) \( \dfrac{tan 10°}{ cot 80°}\)

(v) \( \dfrac{sec 11°}{ cosec 79°}\)

Class 10 Maths Introduction to Trigonometry View Answer