Evaluate the following: \( \dfrac{cos\; 45°}{sec \;30°+cosec \;30°}\)

Asked by Pragya Singh | 1 year ago |  91

1 Answer

Solution :-

We know that,

cos 45° = \( \dfrac{1}{\sqrt{2}}\)

sec 30° = \( \dfrac{2}{\sqrt{3}}\)

cosec 30° = 2

Substitute the values, we get

Ncert solutions class 10 chapter 8-5

Now, multiply both the numerator and denominator by \(\sqrt{2}\) , we get

Ncert solutions class 10 chapter 8-6

Therefore, \(\dfrac{cos\; 45°}{(sec \;30°+cosec \;30°)}= \dfrac{3\sqrt{2}-\sqrt{6}}{8} \)

Answered by Abhisek | 1 year ago

Related Questions

Evalute the following:

(i) \( \dfrac{sin 20°}{ cos 70°}\)

(ii) \(\dfrac{ cos 19°}{ sin 71°}\)

(iii) \( \dfrac{sin 21°}{ cos 69°}\)

(iv) \( \dfrac{tan 10°}{ cot 80°}\)

(v) \( \dfrac{sec 11°}{ cosec 79°}\)

Class 10 Maths Introduction to Trigonometry View Answer