Evaluate$$\dfrac{ tan \;26°}{cot\; 64°}$$

Asked by Abhisek | 1 year ago |  65

Solution :-

To simplify this, convert the tan function into cot function

We know that, 26° is written as 90° – 26°, which is equal to the cot 64°.

$$\dfrac{ tan (90° – 26°)}{cot \;64°}$$

Substitute the value, to simplify this equation

$$\dfrac{ cot \;64°}{cot \;64°}=1$$

Answered by Pragya Singh | 1 year ago

Related Questions

Prove the sinθ sin (90° – θ) – cos θ cos (90° – θ) = 0

Prove the sinθ sin (90° – θ) – cos θ cos (90° – θ) = 0

Prove that sin 48° sec 48° + cos 48° cosec 42° = 2

Prove that sin 48° sec 48° + cos 48° cosec 42° = 2

Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1

Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1

Evaluate the 2sin 3x = \sqrt{3}

Evaluate the $$2sin 3x = \sqrt{3}$$

Evalute the following: sin 20°/ cos 70°

Evalute the following:

(i) $$\dfrac{sin 20°}{ cos 70°}$$

(ii) $$\dfrac{ cos 19°}{ sin 71°}$$

(iii) $$\dfrac{sin 21°}{ cos 69°}$$

(iv) $$\dfrac{tan 10°}{ cot 80°}$$

(v) $$\dfrac{sec 11°}{ cosec 79°}$$