Evaluate: sin 25° cos 65° + cos 25° sin 65°

Asked by Abhisek | 1 year ago |  69

1 Answer

Solution :-

sin 25° cos 65° + cos 25° sin 65°

To simplify this, convert some of the sin functions into cos functions 

and cos function into sin function and it becomes,

= sin(90°-25°) cos 65° + cos (90°-65°) sin 65°

= cos 65° cos 65° + sin 65° sin 65°

= cos265° + sin265° = 1 (since sin2A + cos2A = 1)

Therefore, sin 25° cos 65° + cos 25° sin 65° = 1

Answered by Pragya Singh | 1 year ago

Related Questions

Evalute the following:

(i) \( \dfrac{sin 20°}{ cos 70°}\)

(ii) \(\dfrac{ cos 19°}{ sin 71°}\)

(iii) \( \dfrac{sin 21°}{ cos 69°}\)

(iv) \( \dfrac{tan 10°}{ cot 80°}\)

(v) \( \dfrac{sec 11°}{ cosec 79°}\)

Class 10 Maths Introduction to Trigonometry View Answer