Prove the following identities, where the angles involved are acute angles for which the expressions are defined. \( \dfrac{cos A}{(1+sin A)}+\dfrac{(1+sin A)}{cos A}= 2 sec A\)

Asked by Abhisek | 1 year ago |  44

1 Answer

Solution :-

Now, take the L.H.S of the given equation.

L.H.S. =\( \dfrac{ cosA + (1+sin A)}{(1+sin A)cos A}\)

\( \dfrac{ [cos^2A + (1+sin A)^2]}{(1+sin A)cos A}\)

\( \dfrac{ (cos^2A + sin^2A + 1 + 2sin A)}{(1+sin A) cos A}\)

Since cos2A + sin2A = 1, we can write it as

\( 1+\dfrac{( 1 + 2sin A)}{(1+sin A) cos A}\)

\( \dfrac{(2+ 2sin A)}{(1+sin A)cos A}\)

\( \dfrac{ 2(1+sin A)}{(1+sin A)cos A}\)

\( \dfrac{2}{cos A}\) = 2 sec A = R.H.S.

L.H.S. = R.H.S.

\( \dfrac{cos A}{(1+sin A)}+ \dfrac{(1+sin A)}{cos A}\) = 2 sec A

Hence proved.

Answered by Pragya Singh | 1 year ago

Related Questions

Evalute the following:

(i) \( \dfrac{sin 20°}{ cos 70°}\)

(ii) \(\dfrac{ cos 19°}{ sin 71°}\)

(iii) \( \dfrac{sin 21°}{ cos 69°}\)

(iv) \( \dfrac{tan 10°}{ cot 80°}\)

(v) \( \dfrac{sec 11°}{ cosec 79°}\)

Class 10 Maths Introduction to Trigonometry View Answer