Prove the following identities, where the angles involved are acute angles for which the expressions are defined.(sin A + cosec A)+ (cos A + sec A)2 = 7+tan2A+cot2A

Asked by Abhisek | 1 year ago |  133

1 Answer

Solution :-

L.H.S. = (sin A + cosec A)+ (cos A + sec A)2

It is of the form (a+b)2, expand it

(a+b)2 =a2 + b2 +2ab

= (sin2A + cosec2A + 2 sin A cosec A) 

+ (cos2A + sec2A + 2 cos A sec A)

= (sin2A + cos2A) + 2 sin A(\( \dfrac{1}{sin A}\)

+ 2 cos A (\( \dfrac{1}{cos A}\)) + 1 + tan2A + 1 + cot2A

= 1 + 2 + 2 + 2 + tan2A + cot2A

= 7+tan2A+cot2A = R.H.S.

Therefore, (sin A + cosec A)+ (cos A + sec A)2 

= 7+tan2A+cot2A

Hence proved.

Answered by Pragya Singh | 1 year ago

Related Questions

Evalute the following:

(i) \( \dfrac{sin 20°}{ cos 70°}\)

(ii) \(\dfrac{ cos 19°}{ sin 71°}\)

(iii) \( \dfrac{sin 21°}{ cos 69°}\)

(iv) \( \dfrac{tan 10°}{ cot 80°}\)

(v) \( \dfrac{sec 11°}{ cosec 79°}\)

Class 10 Maths Introduction to Trigonometry View Answer