Prove the following identities, where the angles involved are acute angles for which the expressions are defined.(cosec A – sin A)(sec A – cos A) = \( \dfrac{1}{(tan A+cotA)}\)

Asked by Abhisek | 1 year ago |  163

1 Answer

Solution :-

(cosec A – sin A)(sec A – cos A) 

\( \dfrac{1}{tan A+cotA}\)

First, find the simplified form of L.H.S

L.H.S. = (cosec A – sin A)(sec A – cos A)

Now, substitute the inverse and equivalent trigonometric ratio forms

\( ( \dfrac{1}{sin A} – sin A) ( \dfrac{1}{cos A }– cos A)\)

\( ( \dfrac{1-sin^2A}{sin A})( \dfrac{1-cos^2A}{cos A})\)

\( \dfrac{cos^2A}{sin A}× \dfrac{sin^2A}{cos A}\)

= cos A sin A

Now, simplify the R.H.S

R.H.S. = \( \dfrac{1}{tan A+cotA}\)

\( \dfrac{1}{ \dfrac{sin A}{cos A}+ \dfrac{cos A}{sin A}}\)

\( \dfrac{1}{sin^2A+cos^2A}\)

\( \dfrac{1}{sin A cos A}\)

= cos A sin A

L.H.S. = R.H.S.

(cosec A – sin A)(sec A – cos A)

\( \dfrac{1}{tan A+cotA}\)

Hence proved

Answered by Pragya Singh | 1 year ago

Related Questions

Evalute the following:

(i) \( \dfrac{sin 20°}{ cos 70°}\)

(ii) \(\dfrac{ cos 19°}{ sin 71°}\)

(iii) \( \dfrac{sin 21°}{ cos 69°}\)

(iv) \( \dfrac{tan 10°}{ cot 80°}\)

(v) \( \dfrac{sec 11°}{ cosec 79°}\)

Class 10 Maths Introduction to Trigonometry View Answer