In figure. (i) and (ii), DE || BC. Find EC in (i) and AD in (ii).

Asked by Pragya Singh | 1 year ago |  65

##### Solution :-

(i) Given, in △ ABC, DE∥BC

$$\dfrac{ AD}{DB}=\dfrac{AE}{EC}$$ [Using Basic proportionality theorem]

$$\dfrac{1.5}{3}=\dfrac{1}{EC}$$

⇒EC = $$\dfrac{3}{1.5}$$

EC = 3×$$\dfrac{10}{15}$$ = 2 cm

Hence, EC = 2 cm.

(ii) Given, in △ ABC, DE∥BC

$$\dfrac{ AD}{DB}=\dfrac{AE}{EC}$$ [Using Basic proportionality theorem]

⇒ $$\dfrac{ AD}{7.2}=\dfrac{1.8}{5.4}$$

⇒ AD = 1.8 × $$\dfrac{7.2}{5.4}$$

$$\dfrac{18}{10}×\dfrac{72}{10}×\dfrac{10}{54}=\dfrac{24}{10}$$

Answered by Abhisek | 1 year ago

### Related Questions

#### In an trapezium ABCD, it is given that AB ∥ CD and AB = 2CD. Its diagonals AC and BD

In an trapezium ABCD, it is given that AB ∥ CD and AB = 2CD. Its diagonals AC and BD intersect at the point O such that ar(∆AOB) = 84 cm2. Find ar(∆COD)

#### Find the length of the altitude of an equilateral triangle of side 2a cm.

Find the length of the altitude of an equilateral triangle of side 2a cm.

#### A ladder 10 m long reaches the window of a house 8 m above the ground.

A ladder 10 m long reaches the window of a house 8 m above the ground. Find the distance of the foot of the ladder from the base of the wall.