In the figure, if LM || CB and LN || CD, prove that \( \dfrac{AM}{AB}= \dfrac{AN}{AD}\)

In the fig. if LM II CB and LN II CD, prove that AM/MB = AN/ND - Sarthaks  eConnect | Largest Online Education Community

 

Asked by Pragya Singh | 1 year ago |  46

1 Answer

Solution :-

In the given figure, we can see, LM || CB,

By using basic proportionality theorem, we get,

\( \dfrac{AM}{AB}=\dfrac{AL}{AC}\)……………………..(i)

Similarly, given, LN || CD and using basic proportionality theorem,

\( \dfrac{AN}{AD}=\dfrac{AL}{AC}\)………………………(ii)

From equation (i) and (ii), we get,

\( \dfrac{AM}{AB}\) = \( \dfrac{AN}{AD}\)

Hence, proved.

Answered by Abhisek | 1 year ago

Related Questions

In an trapezium ABCD, it is given that AB ∥ CD and AB = 2CD. Its diagonals AC and BD intersect at the point O such that ar(∆AOB) = 84 cm2. Find ar(∆COD)

Class 10 Maths Triangles View Answer

Find the length of the altitude of an equilateral triangle of side 2a cm.

Class 10 Maths Triangles View Answer

A ladder 10 m long reaches the window of a house 8 m above the ground. Find the distance of the foot of the ladder from the base of the wall.

Class 10 Maths Triangles View Answer

In the given figure, DE ∥ BC such that AD = x cm, DB = (3x + 4) cm, AE = (x + 3) cm and EC = (3x + 19) cm. Find the value of x.

Class 10 Maths Triangles View Answer

If ∆ABC ∼ ∆DEF such that 2 AB = DE and BC = 6 cm, find EF.

Class 10 Maths Triangles View Answer