In the figure, if LM || CB and LN || CD, prove that $$\dfrac{AM}{AB}= \dfrac{AN}{AD}$$

Asked by Pragya Singh | 1 year ago |  46

##### Solution :-

In the given figure, we can see, LM || CB,

By using basic proportionality theorem, we get,

$$\dfrac{AM}{AB}=\dfrac{AL}{AC}$$……………………..(i)

Similarly, given, LN || CD and using basic proportionality theorem,

$$\dfrac{AN}{AD}=\dfrac{AL}{AC}$$………………………(ii)

From equation (i) and (ii), we get,

$$\dfrac{AM}{AB}$$ = $$\dfrac{AN}{AD}$$

Hence, proved.

Answered by Abhisek | 1 year ago

### Related Questions

#### In an trapezium ABCD, it is given that AB ∥ CD and AB = 2CD. Its diagonals AC and BD

In an trapezium ABCD, it is given that AB ∥ CD and AB = 2CD. Its diagonals AC and BD intersect at the point O such that ar(∆AOB) = 84 cm2. Find ar(∆COD)

#### Find the length of the altitude of an equilateral triangle of side 2a cm.

Find the length of the altitude of an equilateral triangle of side 2a cm.

#### A ladder 10 m long reaches the window of a house 8 m above the ground.

A ladder 10 m long reaches the window of a house 8 m above the ground. Find the distance of the foot of the ladder from the base of the wall.