In the figure, DE||AC and DF||AE. Prove that $$\dfrac{BF}{FE}=\dfrac{BE}{EC}$$

Asked by Pragya Singh | 1 year ago |  54

##### Solution :-

In ΔABC, given as, DE || AC

Thus, by using Basic Proportionality Theorem, we get,

$$\dfrac{BD}{DA}=\dfrac{BE}{EC}$$…………………(i)

In  ΔBAE, given as, DF || AE

Thus, by using Basic Proportionality Theorem, we get,

$$\dfrac{BD}{DA}=\dfrac{BF}{FE}$$  ………………(ii)

From equation (i) and (ii), we get

$$\dfrac{BE}{EC}$$ = $$\dfrac{BF}{FE}$$

Hence, proved.

Answered by Abhisek | 1 year ago

### Related Questions

#### In an trapezium ABCD, it is given that AB ∥ CD and AB = 2CD. Its diagonals AC and BD

In an trapezium ABCD, it is given that AB ∥ CD and AB = 2CD. Its diagonals AC and BD intersect at the point O such that ar(∆AOB) = 84 cm2. Find ar(∆COD)

#### Find the length of the altitude of an equilateral triangle of side 2a cm.

Find the length of the altitude of an equilateral triangle of side 2a cm.

#### A ladder 10 m long reaches the window of a house 8 m above the ground.

A ladder 10 m long reaches the window of a house 8 m above the ground. Find the distance of the foot of the ladder from the base of the wall.