In Figure, AD is a median of a triangle ABC and AM ⊥ BC. Prove that :

(i) AC2 = AD2 + BC.DM + 2 (\( \dfrac{BC}{2}\)) 2

(ii) AB2 = AD2 – BC.DM + 2 (\( \dfrac{BC}{2}\)) 2

(iii) AC2 + AB2 = 2 AD2 + \( \dfrac{1}{2}\) BC2

Asked by Pragya Singh | 1 year ago |  45

1 Answer

Solution :-

(i) By applying Pythagoras Theorem in ∆AMD, we get,

AM2 + MD2 = AD2 ………………. (i)

Again, by applying Pythagoras Theorem in ∆AMC, we get,

AM2 + MC2 = AC2

AM2 + (MD + DC) 2 = AC2

(AM2 + MD2 ) + DC2 + 2MD.DC = AC2

From equation(i), we get,

AD2 + DC2 + 2MD.DC = AC2

Since, DC=BC/2, thus, we get,

AD+ (BC/2) 2 + 2MD.(BC/2) 2 = AC2

AD+ (BC/2) 2 + 2MD × BC = AC2

Hence, proved.

 

(ii) By applying Pythagoras Theorem in ∆ABM, we get;

AB2 = AM2 + MB2

= (AD2 − DM2) + MB2

= (AD2 − DM2) + (BD − MD) 2

= AD2 − DM2 + BD2 + MD2 − 2BD × MD

= AD2 + BD2 − 2BD × MD

= AD+ (\(\dfrac{BC}{2}\))– 2(\( \dfrac{BC}{2}\)) MD

= AD+ (\( \dfrac{BC}{2}\))– BC MD

Hence, proved.

 

(iii) By applying Pythagoras Theorem in ∆ABM, we get,

AM2 + MB2 = AB2 ………….… (i)

By applying Pythagoras Theorem in ∆AMC, we get,

AM2 + MC2 = AC2 ……..… (ii)

Adding both the equations (i) and (ii), we get,

2AM2 + MB2 + MC2 = AB2 + AC2

2AM2 + (BD − DM) 2 + (MD + DC) 2 

= AB2 + AC2

2AM2+BD2 + DM2 − 2BD.DM + MD2 

+ DC2 + 2MD.DC = AB2 + AC2

2AM2 + 2MD2 + BD2 + DC2 + 2MD

 (− BD + DC) = AB2 + AC2

2(AM2+ MD2) + (\( \dfrac{BC}{2}\)) 2 + (\( \dfrac{BC}{2}\)) 2 + 2MD 

(\( \dfrac{-BC}{2}\) + \( \dfrac{BC}{2}\)) 2 = AB2 + AC2

2AD+ \( \dfrac{BC^2}{2}\) = AB2 + AC2

Answered by Abhisek | 1 year ago

Related Questions

In an trapezium ABCD, it is given that AB ∥ CD and AB = 2CD. Its diagonals AC and BD intersect at the point O such that ar(∆AOB) = 84 cm2. Find ar(∆COD)

Class 10 Maths Triangles View Answer

Find the length of the altitude of an equilateral triangle of side 2a cm.

Class 10 Maths Triangles View Answer

A ladder 10 m long reaches the window of a house 8 m above the ground. Find the distance of the foot of the ladder from the base of the wall.

Class 10 Maths Triangles View Answer

In the given figure, DE ∥ BC such that AD = x cm, DB = (3x + 4) cm, AE = (x + 3) cm and EC = (3x + 19) cm. Find the value of x.

Class 10 Maths Triangles View Answer

If ∆ABC ∼ ∆DEF such that 2 AB = DE and BC = 6 cm, find EF.

Class 10 Maths Triangles View Answer