Find the point on the x-axis which is equidistant from (2, – 5) and (- 2, 9).

Asked by Abhisek | 1 year ago |  101

1 Answer

Solution :-

To find a point on x-axis. Therefore, its y-coordinate will be 0. Let the point on x-axis be (x,0).

Consider A = (x, 0); B = (2, – 5) and C = (- 2, 9).

Simplify the above equation,

Remove square root by taking square both the sides, we get

(2 – x)+ 25 = [-(2 + x)]+ 81

(2 – x)+ 25 = (2 + x)+ 81

x+ 4 – 4x + 25 = x+ 4 + 4x + 81

8x = 25 – 81 = -56

x = -7

Therefore, the point is (- 7, 0).

Answered by Pragya Singh | 1 year ago

Related Questions

In the determine whether the given quadratic equations have real roots and if so, And the roots 3x2 – 2x + 2 = 0

Class 10 Maths Coordinate Geometry View Answer

Find the point on x-axis which is equidistant from the points (-2, 5) and (2, -3).

Class 10 Maths Coordinate Geometry View Answer

Answer the following questions:-

(i) Show that the points A (5, 6), B (1, 5), C (2, 1) and D (6, 2) are the vertices of a square. 

(ii) Prove that the points A (2, 3), B (-2, 2), C (-1, -2) and D (3, -1) are the vertices of a square ABCD.

(iii) Name the type of triangle PQR formed by the point \( P(\sqrt{2} , \sqrt{2}), Q(- \sqrt{2}, – \sqrt{2)} and\; R (-\sqrt{6} , \sqrt{6} )\)

Class 10 Maths Coordinate Geometry View Answer

Find a point on the x-axis which is equidistant from the points (7, 6) and (-3, 4).

Class 10 Maths Coordinate Geometry View Answer

Find the coordinates of the circumcentre of the triangle whose vertices are (3, 0), (-1, -6) and (4, -1). Also, find its circumradius.
 

Class 10 Maths Coordinate Geometry View Answer