Read each statement below carefully and state with reasons and examples, if it is true or false; A particle in one-dimensional motion

(a) with zero speed at an instant may have non-zero acceleration at that instant

(b) with zero speed may have non-zero velocity,

(c) with constant speed must have zero acceleration,

(d) with positive value of acceleration must be speeding up

Asked by Pragya Singh | 1 year ago |  87

##### Solution :-

Explanation:-

You are at rest so you have a zero speed but at the same time the acceleration due to gravity is acting on you.

Thus a non-zero acceleration is acting on you!

Explanation:-

No it have zero velocity cause if speed is zero it means distance also zero and if distance is zero than there is no any shortest path and no. velocity

Explanation:-

(if the particle rebounds instantly with the same speed, it implies infinite acceleration which is unphysical)

Explanation:-

(true only when the chosen positive direction is along the direction of motion)

Answered by Abhisek | 1 year ago

### Related Questions

#### The velocity-time graph of a particle in one-dimensional motion is shown in the figure.

The velocity-time graph of a particle in one-dimensional motion is shown in the figure.

(a) $$x (t_2) = x (t_1) + v (t_1) (t_2 – t_1) +$$ ($$\dfrac{1}{2}$$$$a(t_2 – t_1)^2$$

(b) $$v(t_2) = v(t_1) + a(t_2 – t_1)$$

(c) Vaverage = $$\dfrac{ x(t_2) – x (t_1)}{(t_2 – t_1)}$$

(d)  aaverage =  $$\dfrac{v(t_2) – v (t_1) }{(t_2 – t_1)}$$

(e) $$x (t_2) = x (t_1) + v_{av} (t_2 – t_1) +$$ ($$\dfrac{1}{2}$$$$a_{av} (t_2 – t_1)^2$$

(f) $$x(t_2) – x (t_1)$$ = Area under the v-t curve bounded by t- axis and the dotted lines.

#### The speed-time graph of a particle moving along a fixed direction is shown in the figure.

The speed-time graph of a particle moving along a fixed direction is shown in the figure. Obtain the distance traversed by the particle between

(a) t = 0 s to 10 s,

(b) t = 2 s to 6 s.

#### Two stones are thrown up simultaneously from the edge of a cliff 200 m high with initial speeds of 15 m s–1

Two stones are thrown up simultaneously from the edge of a cliff 200 m high with initial speeds of $$15ms^{-1}$$ and $$30ms^{-1}$$Verify that the graph shown in given figure correctly represents the time variation of the relative position of the second stone with respect to the first. Neglect air resistance and assume that the stones do not rebound after hitting the ground. Take g = $$10ms^{-2}$$ Give the equations for the linear and curved parts of the plot.

#### On a long horizontally moving belt figure, a child runs to and fro with a speed 9 km h–1

On a long horizontally moving belt figure, a child runs to and fro with a speed 9 km h–1 (with respect to the belt) between his father and mother located 50 m apart on the moving belt. The belt moves with a speed of 4 km h–1. For an observer on a stationary platform outside, what is the

(a) speed of the child running in the direction of motion of the belt ?.

(b) speed of the child running opposite to the direction of motion of the belt?

(c) time taken by the child in (a) and (b)?

Which of the answers alter if motion is viewed by one of the parents?