If in problem 21, the speed of the stone is increased beyond the maximum permissible value, and the string breaks suddenly, which of the following correctly describes the trajectory of the stone after the string breaks:

(a) the stone moves radially outwards,

(b) the stone flies off tangentially from the instant the string breaks,

(c) the stoneflies off at an angle with the tangent whose magnitude depends on the speed of the particle?

Asked by Abhisek | 1 year ago |  76

##### Solution :-

Right answer is  (b) the stone flies off tangentially from the instant the string breaks

At each point of the circular motion, the velocity will be tangential. If the string breaks suddenly the stone moves in the tangential direction according to Newton’s first law of motion.

Answered by Pragya Singh | 1 year ago

### Related Questions

#### A thin circular loop of radius R rotates about its vertical diameter with an angular frequency ω.

A thin circular loop of radius R rotates about its vertical diameter with an angular frequency ω. Show that a small bead on the wire loop remains at its lowermost point for $$ω ≤\dfrac{\sqrt{g}}{R}$$ . What is the angle made by the radius vector joining the centre to the bead with the vertically downward direction for $$ω =\dfrac{\sqrt{2g}}{R}$$ ? Neglect friction.

#### A 70 kg man stands in contact against the inner wall of a hollow cylindrical drum of radius 3 m

A 70 kg man stands in contact against the inner wall of a hollow cylindrical drum of radius 3 m rotating about its vertical axis with 200 rev/min. The coefficient of friction between the wall and his clothing is 0.15. What is the minimum rotational speed of the cylinder to enable the man to remain stuck to the wall (without falling) when the floor is suddenly removed?

#### You may have seen in a circus a motorcyclist driving in vertical loops inside a ‘death well’

You may have seen in a circus a motorcyclist driving in vertical loops inside a ‘death well’ (a hollow spherical chamber with holes, so the spectators can watch from outside). Explain clearly why the motorcyclist does not drop down when he is at the uppermost point, with no support from below. What is the minimum speed required at the uppermost position to perform a vertical loop if the radius of the chamber is 25 m?

A disc revolves with a speed of $$33 \dfrac{1}{3}$$ rpm and has a radius of 15 cm. Two coins are placed at 4 cm and 14 cm away from the centre of the record. If the coefficient of friction between the coins and record is 0.15, which of the coins will revolve with the record?