A stone of mass m tied to the end of a string is revolving in a vertical circle of radius R. The net force at the lowest and highest points of the circle directed vertically downwards are: (choose the correct alternative).

T1 and v1 denote the tension and speed at the lowest point. Tand v2 denote corresponding values at the highest point.

Asked by Abhisek | 1 year ago |  115

##### Solution :-

T1 and v1 denote the tension and speed at the lowest point. Tand v2 denote corresponding values at the highest point.

The net force at the lowest point is (mg – T1) and the net force at the highest point is (mg + T2). Therefore option (a) is correct.

Since mg and T1 are in mutually opposite directions at the lowest point and mg and T2 are in the same direction at the highest point.

Answered by Pragya Singh | 1 year ago

### Related Questions

#### A thin circular loop of radius R rotates about its vertical diameter with an angular frequency ω.

A thin circular loop of radius R rotates about its vertical diameter with an angular frequency ω. Show that a small bead on the wire loop remains at its lowermost point for $$ω ≤\dfrac{\sqrt{g}}{R}$$ . What is the angle made by the radius vector joining the centre to the bead with the vertically downward direction for $$ω =\dfrac{\sqrt{2g}}{R}$$ ? Neglect friction.

#### A 70 kg man stands in contact against the inner wall of a hollow cylindrical drum of radius 3 m

A 70 kg man stands in contact against the inner wall of a hollow cylindrical drum of radius 3 m rotating about its vertical axis with 200 rev/min. The coefficient of friction between the wall and his clothing is 0.15. What is the minimum rotational speed of the cylinder to enable the man to remain stuck to the wall (without falling) when the floor is suddenly removed?

#### You may have seen in a circus a motorcyclist driving in vertical loops inside a ‘death well’

You may have seen in a circus a motorcyclist driving in vertical loops inside a ‘death well’ (a hollow spherical chamber with holes, so the spectators can watch from outside). Explain clearly why the motorcyclist does not drop down when he is at the uppermost point, with no support from below. What is the minimum speed required at the uppermost position to perform a vertical loop if the radius of the chamber is 25 m?

A disc revolves with a speed of $$33 \dfrac{1}{3}$$ rpm and has a radius of 15 cm. Two coins are placed at 4 cm and 14 cm away from the centre of the record. If the coefficient of friction between the coins and record is 0.15, which of the coins will revolve with the record?