In given figure depicts four x-t plots for linear motion of a particle. Which of the plots represent periodic motion? What is the period of motion (in case of periodic motion)?

Asked by Pragya Singh | 1 year ago |  81

##### Solution :-

(a) It is not periodic motion because motion does not repeat itself after a regular interval of time

(b) The given graph illustrates a periodic motion, which is repeating itself after every 2 seconds

(c) The given graph does not exhibit a periodic motion because the motion is repeated in one position only. For a periodic motion, the entire motion during one period must be repeated successively

(d) The given graph illustrates a periodic motion, which is repeating itself in every 2 seconds

Answered by Abhisek | 1 year ago

### Related Questions

#### A mass attached to a spring is free to oscillate, with angular velocity ω, in a horizontal plane without friction

A mass attached to a spring is free to oscillate, with angular velocity ω, in a horizontal plane without friction or damping. It is pulled to a distance x0 and pushed towards the centre with a velocity v0 at time t = 0. Determine the amplitude of the resulting oscillations in terms of the parameters ω, x0 and v0. [Hint: Start with the equation x = a cos (ωt+θ) and note that the initial velocity is negative.]

#### A body describes simple harmonic motion with an amplitude of 5 cm and a period of 0.2 s.

A body describes simple harmonic motion with an amplitude of 5 cm and a period of 0.2 s. Find the acceleration and velocity of the body when the displacement is

(a) 5 cm

(b) 3 cm

(c) 0 cm.

#### A circular disc of mass 10 kg is suspended by a wire attached to its centre.

A circular disc of mass 10 kg is suspended by a wire attached to its centre. The wire is twisted by rotating the disc and released. The period of torsional oscillations is found to be 1.5 s. The radius of the disc is 15 cm. Determine the torsional spring constant of the wire. (Torsional spring constant α is defined by the relation J = –α θ, where J is the restoring couple and θ the angle of twist).

#### Show that for a particle in linear SHM the average kinetic energy over a period of oscillation equals.

Show that for a particle in linear SHM the average kinetic energy over a period of oscillation equals the average potential energy over the same period.