Which of the following relationships between the acceleration a and the displacement x of a particle involve simple harmonic motion?

(a) a = 0.7x

(b) a = –200x2

(c) a = –10x

(d) a = 100x3

Asked by Pragya Singh | 1 year ago |  87

##### Solution :-

Condition of SHM

Acceleration is directly proportional to negative of displacement of particle

If ‘a’ is acceleration

x is displacement

Then, for Simple Harmonic Motion,

a = – kx where k is constant

(a) a = 0.7x

This is not in the form of a = -kx

Hence, this is not SHM

(b) a = – 200x2

Clearly, it is not SHM

(c) a = -10x

This is in the form of a = -kx

Hence, this is SHM

(d) a = 100x3

It’s clear it is not SHM

Answered by Abhisek | 1 year ago

### Related Questions

#### A mass attached to a spring is free to oscillate, with angular velocity ω, in a horizontal plane without friction

A mass attached to a spring is free to oscillate, with angular velocity ω, in a horizontal plane without friction or damping. It is pulled to a distance x0 and pushed towards the centre with a velocity v0 at time t = 0. Determine the amplitude of the resulting oscillations in terms of the parameters ω, x0 and v0. [Hint: Start with the equation x = a cos (ωt+θ) and note that the initial velocity is negative.]

#### A body describes simple harmonic motion with an amplitude of 5 cm and a period of 0.2 s.

A body describes simple harmonic motion with an amplitude of 5 cm and a period of 0.2 s. Find the acceleration and velocity of the body when the displacement is

(a) 5 cm

(b) 3 cm

(c) 0 cm.

#### A circular disc of mass 10 kg is suspended by a wire attached to its centre.

A circular disc of mass 10 kg is suspended by a wire attached to its centre. The wire is twisted by rotating the disc and released. The period of torsional oscillations is found to be 1.5 s. The radius of the disc is 15 cm. Determine the torsional spring constant of the wire. (Torsional spring constant α is defined by the relation J = –α θ, where J is the restoring couple and θ the angle of twist).

#### Show that for a particle in linear SHM the average kinetic energy over a period of oscillation equals.

Show that for a particle in linear SHM the average kinetic energy over a period of oscillation equals the average potential energy over the same period.