Toricelli’s barometer used mercury. Pascal duplicated it using French wine of density 984 kg m–3. Determine the height of the wine column for normal atmospheric pressure.

Asked by Pragya Singh | 1 year ago |  91

Solution :-

We know:

Density of mercury, ρ1 = 13.6 × 103 kg/m3

Height of the mercury column, h1 = 0.76 m

Density of French wine, ρ2 = 984 kg/m3

Let the height of the French wine column = h2

Acceleration due to gravity, g = 9.8 m/s2.

We know that:

Pressure in the mercury column = Pressure in the wine column

ρ1hg =ρ2hg

$$⇒ h_2 = \dfrac{ \rho _{ 1 } h_{ 1 } }{ \rho _{ 2 } }ρ_2​ρ_1​h_1​​$$

$$⇒ h_2 = \dfrac{ 13.6 \times 10^{ 3 } \times 0.76 }{ 984 }​= 10.5 m$$

Answered by Abhisek | 1 year ago

Related Questions

According to the law of atmospheres density of air decreases with increase in height y

(a) According to the law of atmospheres density of air decreases with increase in height y as $$ρ=\rho _{0}e^{\dfrac{-y}{y_{0}}}$$. Where ρ0 =1.25 kg m-3 is the density of air at sea level and yis a constant. Derive this equation/law considering that the atmosphere and acceleration due to gravity remain constant.

(b) A zeppelin of volume 1500 m3 is filled with helium and it is lifting a mass of 400 kg. Assuming that the radius of the zeppelin remains constant as it ascends. How high will it rise?[ y0 = 8000 m and ρHe =0.18 kg m-3].

Two narrow bores of diameters 3.0 mm and 6.0 mm are joined together to form a U-tube open at both ends.

Two narrow bores of diameters 3.0 mm and 6.0 mm are joined together to form a U-tube open at both ends. If the U-tube contains water, what is the difference in its levels in the two limbs of the tube? Surface tension of water at the temperature of the experiment is 7.3 × 10–2 N m–1. Take the angle of contact to be zero and density of water to be 1.0 × 103 kg m–3 (g = 9.8 m s–2).

Mercury has an angle of contact equal to 140° with soda lime glass. A narrow tube of radius

Mercury has an angle of contact equal to 140° with soda lime glass. A narrow tube of radius 1.00 mm made of this glass is dipped in a trough containing mercury. By what amount does the mercury dip down in the tube relative to the liquid surface outside ? Surface tension of mercury at the temperature of the experiment is 0.465 N m–1. Density of mercury = 13.6 × 103 kg m–3

In Millikan’s oil drop experiment, what is the terminal speed of an uncharged drop of radius $$2.0 × 10^{–5} m$$ and density $$1.2 × 10^3 kg m^{–3}$$. Take the viscosity of air at the temperature of the experiment to be $$1.8 × 10^{–5} Pa$$. How much is the viscous force on the drop at that speed? Neglect buoyancy of the drop due to air.
A plane is in level flight at constant speed and each of its wings has an area of $$25 m^2$$. If the speed of the air is 180 km/h over the lower wing and 234 km/h over the upper wing surface, determine the plane’s mass. (Take air density to be $$1 kg/m^3$$), g = $$9.8 m/s^2$$