For carbon hydrides which belong to type (Cn H2n+2), the following hydrides are possible for
n = 1⇒CH4
n = 2⇒C2 H6
n = 3⇒C3 H8
For a hydride to act as a Lewis acid, it should be electron deficient.
Lewis acid = electron accepting
Also, for a hydride to act as a Lewis base, it should be electron rich.
Lewis base = electron donating
Taking C2 H6 as an example, the total number of electrons are 14 and the total covalent bonds are 7. Hence, the bonds are regular 2e– 2centered bonds.
Hence, hydride C2 H6 has sufficient electrons to be represented by a conventional Lewis structure. Therefore, it is an electron-precise hydride, having all atoms with octets. Thus, it can neither accept nor donate electrons to act as a Lewis base or Lewis acid.
Answered by Pragya Singh | 1 year agoWhat do you understand by the terms :
(i) Hydrogen economy
(ii) Hydrogenation
(iii) ‘syngas’
(iv) Water-gas shift reaction
(v) Fuel cell?
Do you expect different products in solution when aluminium (III) chloride and potassium chloride treated separately with
(i) alkaline water
(ii) acidified water, and
(iii) normal water. Write equations wherever necessary.
What do you expect the nature of hydrides is, if formed by elements of atomic numbers 15, 19, 23 and 44 with dihydrogen? Compare their behaviour with water.
How can saline hydrides remove traces of water from organic compounds?