A sample of HI(g) is placed in a flask at a pressure of 0.2 atm. At equilibrium, the partial pressure of HI(g) is 0.04 atm. What is Kp for the given equilibrium?

2HI(g) ⇌ H2(g)+I2(g)

Asked by Pragya Singh | 1 year ago |  62

1 Answer

Solution :-

The initial concentration of HI is 0.2 atm. At equilibrium, it has a partial pressure of 0.04 atm.

Therefore, a decrease in the pressure of HI is 0.2 – 0.04 = 0.16. The given reaction is:

2HI(g)  ⇌   H2(g) +  I2(g)

Initial conc.      0.2 atm       0         0

At equilibrium  0.4 atm, 

  \( \dfrac{0.16}{2}\),  \( \dfrac{0.16}{2}\)   =0.08atm  


\( K_{p=}\dfrac{p_{H_{2}}\times p_{I_{2}}}{p^{2}_{HI}}\\ \\ \)

\( =\dfrac{0.08\times 0.08}{(0.04)^{2}}\\ \\ \)

\( =\dfrac{0.0064}{0.0016}\\ \\\)

\( =4.0\)

Hence, the value of Kp for the given equilibrium is 4.0.

Answered by Abhisek | 1 year ago

Related Questions

The concentration of sulphide ion in 0.1M HCl solution saturated with hydrogen sulphide is 1.0 × 10–19 M. If 10 mL of this is added to 5 mL of 0.04M solution of the following: FeSO4, MnCl2, ZnCl2 and CdCl2 . in which of these solutions precipitation will take place?

Class 11 Chemistry Equilibrium View Answer

What is the minimum volume of water required to dissolve 1g of calcium sulphate at 298 K? (For calcium sulphate, Ksp is 9.1 × 10–6).

Class 11 Chemistry Equilibrium View Answer

What is the maximum concentration of equimolar solutions of ferrous sulphate and sodium sulphide so that when mixed in equal volumes, there is no precipitation of iron sulphide? (For iron sulphide, Ksp = 6.3 × 10–18).

Class 11 Chemistry Equilibrium View Answer

The ionization constant of benzoic acid is 6.46 × 10–5 and Ksp for silver benzoate is 2.5 × 10–13. How many times is silver benzoate more soluble in a buffer of pH 3.19 compared to its solubility in pure water?

Class 11 Chemistry Equilibrium View Answer

Equal volumes of 0.002 M solutions of sodium iodate and cupric chlorate are mixed together. Will it lead to precipitation of copper iodate? (For cupric iodate Ksp = 7.4 × 10–8 ).

Class 11 Chemistry Equilibrium View Answer