If U = {a, b, c, d, e, f, g, h}, find the complements of the following sets:

(i) A = {a, b, c}

(ii) B = {d, e, f, g}

(iii) C = {a, c, e, g}

(iv) D = {f, g, h, a}

So we get

A’ = {d, e, f, g, h}

B’ = {a, b, c, h}

C’ = {b, d, f, h}

D’ = {b, c, d, e}

If A = {x : x ϵ R, x < 5} and B = {x : x ϵ R, x > 4}, find A ∩ B.

Prove that A – B = A ∩ B.’

Find the symmetric difference A Δ B, when A = {1, 2, 3} and B = {3, 4, 5}.

Prove that A ∩ (A ⋃ B)’ = ϕ

If A = {3, {2}}, find P(A).