If U = {a, b, c, d, e, f, g, h}, find the complements of the following sets:
(i) A = {a, b, c}
(ii) B = {d, e, f, g}
(iii) C = {a, c, e, g}
(iv) D = {f, g, h, a}
So we get
A’ = {d, e, f, g, h}
B’ = {a, b, c, h}
C’ = {b, d, f, h}
D’ = {b, c, d, e}
If A = {x : x ϵ R, x < 5} and B = {x : x ϵ R, x > 4}, find A ∩ B.
Prove that A – B = A ∩ B.’
Find the symmetric difference A Δ B, when A = {1, 2, 3} and B = {3, 4, 5}.
Prove that A ∩ (A ⋃ B)’ = ϕ
If A = {3, {2}}, find P(A).