Fill in the blanks to make each of the following a true statement:

(i) A U A’ = ……..

(ii) Φ′ ∩ A = …….

(iii) A ∩ A’ = …….

(iv) U’ ∩ A = …….

(i) A U A’ = U

(ii) Φ′ ∩ A = U ∩ A = A

So we get

Φ′ ∩ A = A

(iii) A ∩ A’ = Φ

(iv) U’ ∩ A = Φ ∩ A = Φ

U’ ∩ A = Φ

If A = {x : x ϵ R, x < 5} and B = {x : x ϵ R, x > 4}, find A ∩ B.

Prove that A – B = A ∩ B.’

Find the symmetric difference A Δ B, when A = {1, 2, 3} and B = {3, 4, 5}.

Prove that A ∩ (A ⋃ B)’ = ϕ

If A = {3, {2}}, find P(A).