Fill in the blanks to make each of the following a true statement:
(i) A U A’ = ……..
(ii) Φ′ ∩ A = …….
(iii) A ∩ A’ = …….
(iv) U’ ∩ A = …….
(i) A U A’ = U
(ii) Φ′ ∩ A = U ∩ A = A
So we get
Φ′ ∩ A = A
(iii) A ∩ A’ = Φ
(iv) U’ ∩ A = Φ ∩ A = Φ
U’ ∩ A = Φ
If A = {x : x ϵ R, x < 5} and B = {x : x ϵ R, x > 4}, find A ∩ B.
Prove that A – B = A ∩ B.’
Find the symmetric difference A Δ B, when A = {1, 2, 3} and B = {3, 4, 5}.
Prove that A ∩ (A ⋃ B)’ = ϕ
If A = {3, {2}}, find P(A).