In a committee, 50 people speak French, 20 speak Spanish and 10 speak both Spanish and French. How many speak at least one of these two languages?

Asked by Abhisek | 1 year ago |  84

1 Answer

Solution :-

Consider F as the set of people in the committee who speak French

S as the set of people in the committee who speak Spanish

n(F) = 50

n(S) = 20

n(S ∩ F) = 10

It can be written as

n(S ∪ F) = n(S) + n(F) – n(S ∩ F)

By substituting the values

n(S ∪ F) = 20 + 50 – 10

By further calculation

n(S ∪ F) = 70 – 10

n(S ∪ F) = 60

Therefore, 60 people in the committee speak at least one of the two languages.

Answered by Pragya Singh | 1 year ago

Related Questions

If A = {x : x ϵ R, x < 5} and B = {x : x ϵ R, x > 4}, find A ∩ B.

Class 11 Maths Sets View Answer

Find the symmetric difference A Δ B, when A = {1, 2, 3} and B = {3, 4, 5}.

Class 11 Maths Sets View Answer