Consider F as the set of people in the committee who speak French
S as the set of people in the committee who speak Spanish
n(F) = 50
n(S) = 20
n(S ∩ F) = 10
It can be written as
n(S ∪ F) = n(S) + n(F) – n(S ∩ F)
By substituting the values
n(S ∪ F) = 20 + 50 – 10
By further calculation
n(S ∪ F) = 70 – 10
n(S ∪ F) = 60
Therefore, 60 people in the committee speak at least one of the two languages.
Answered by Pragya Singh | 1 year agoFind the symmetric difference A Δ B, when A = {1, 2, 3} and B = {3, 4, 5}.