According to the question,

To prove, (i) \( \leftrightarrow\) (ii)

Here, (i) = A ⊂ B and (ii) = A – B ≠ ϕ

Let us assume that A ⊂ B

To prove, A – B ≠ ϕ

Let A – B ≠ ϕ

Hence, there exists X ∈ A, X ≠ B, but since A⊂ B, it is not possible

A – B = ϕ

And A⊂ B ⇒ A – B ≠ ϕ

Let us assume that A – B ≠ ϕ

To prove: A ⊂ B

Let X∈ A

So, X ∈ B (if X ∉ B, then A – B ≠ ϕ)

Hence, A – B = ϕ => A ⊂ B

(i) \( \leftrightarrow\) (ii)

Let us assume that A ⊂ B

To prove, A ∪ B = B

⇒ B ⊂ A ∪ B

Let us assume that, x ∈ A∪ B

⇒ X ∈ A or X ∈ B

Taking Case I: X ∈ B

A ∪ B = B

Taking Case II: X ∈ A

⇒ X ∈ B (A ⊂ B)

⇒ A ∪ B ⊂ B

Let A ∪ B = B

Let us assume that X ∈ A

⇒ X ∈ A ∪ B (A ⊂ A ∪ B)

⇒ X ∈ B (A ∪ B = B)

A⊂ B

Hence, (i) \( \leftrightarrow\) (iii)

To prove (i) \( \leftrightarrow\) (iv)

Let us assume that A ⊂ B

A ∩ B ⊂ A

Let X ∈ A

To prove, X ∈ A∩ B

Since, A ⊂ B and X ∈ B

Hence, X ∈ A ∩ B

⇒ A ⊂ A ∩ B

⇒ A = A ∩ B

Let us assume that A ∩ B = A

Let X ∈ A

⇒ X ∈ A ∩ B

⇒ X ∈ B and X ∈ A

⇒ A ⊂ B

(i) \( \leftrightarrow\)(iv)

(i) \( \leftrightarrow\) (ii) \( \leftrightarrow\) (iii) \( \leftrightarrow\)(iv)

Hence, proved

Answered by Pragya Singh | 1 year agoFind the symmetric difference A Δ B, when A = {1, 2, 3} and B = {3, 4, 5}.