Assume that P (A) = P (B). Show that A = B

Asked by Abhisek | 1 year ago |  85

1 Answer

Solution :-

To show,

A = B

According to the question,

P (A) = P (B)

Let x be any element of set A,

x ∈ A

Since, P (A) is the power set of set A, it has all the subsets of set A.

A ∈ P (A) = P (B)

Let C be an element of set B

For any C ∈ P (B),

We have, x ∈ C

C ⊂ B

x ∈ B

A ⊂ B

Similarly, we have:

B ⊂ A

SO, we get,

If A ⊂ B and B ⊂ A

A = B

Answered by Pragya Singh | 1 year ago

Related Questions

If A = {x : x ϵ R, x < 5} and B = {x : x ϵ R, x > 4}, find A ∩ B.

Class 11 Maths Sets View Answer

Find the symmetric difference A Δ B, when A = {1, 2, 3} and B = {3, 4, 5}.

Class 11 Maths Sets View Answer