Let A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}. Verify that

(i) A × (B ∩ C) = (A × B) ∩ (A × C)

(ii) A × C is a subset of B × D

Asked by Pragya Singh | 11 months ago |  65

1 Answer

Solution :-

Given,

A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}

(i) To verify: A × (B ∩ C) = (A × B) ∩ (A × C)

Now, B ∩ C = {1, 2, 3, 4} ∩ {5, 6} = Φ

Thus,

L.H.S. = A × (B ∩ C) = A × Φ = Φ

Next,

A × B = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4)}

A × C = {(1, 5), (1, 6), (2, 5), (2, 6)}

Thus,

R.H.S. = (A × B) ∩ (A × C) = Φ

Therefore, L.H.S. = R.H.S

– Hence verified

 

(ii) To verify: A × C is a subset of B × D

First,

A × C = {(1, 5), (1, 6), (2, 5), (2, 6)}

And,

B × D = {(1, 5), (1, 6), (1, 7), (1, 8), (2, 5), (2, 6), (2, 7), (2, 8), (3, 5), (3, 6), (3, 7), (3, 8), (4, 5), (4, 6), (4, 7), (4, 8)}

Now, it’s clearly seen that all the elements of set A × C are the elements of set B × D.

Thus, A × C is a subset of B × D.

– Hence verified

Answered by Abhisek | 11 months ago

Related Questions

Let R = {(a, b) : a, b, ϵ N and a < b}.Show that R is a binary relation on N, which is neither reflexive nor symmetric. Show that R is transitive.

Class 11 Maths Relations and Functions View Answer

Let R = {(x, x2) : x is a prime number less than 10}.

(i) Write R in roster form.

(ii) Find dom (R) and range (R).

Class 11 Maths Relations and Functions View Answer