Given,

A = {1, 2} and B = {3, 4}

So,

A × B = {(1, 3), (1, 4), (2, 3), (2, 4)}

Number of elements in A × B is n(A × B) = 4

We know that,

If C is a set with n(C) = m, then n[P(C)] = 2^{m}.

Thus, the set A × B has 2^{4} = 16 subsets.

And, these subsets are as below:

Φ, {(1, 3)}, {(1, 4)}, {(2, 3)}, {(2, 4)}, {(1, 3), (1, 4)}, {(1, 3), (2, 3)}, {(1, 3),

(2, 4)}, {(1, 4), (2, 3)}, {(1, 4), (2, 4)}, {(2, 3), (2, 4)}, {(1, 3), (1, 4), (2, 3)},

{(1, 3), (1, 4), (2, 4)}, {(1, 3), (2, 3), (2, 4)}, {(1, 4), (2, 3), (2, 4)}, {(1, 3),

(1, 4), (2, 3), (2, 4)}

Answered by Abhisek | 1 year agoLet R = {(a, b) : a, b, ϵ N and a < b}.Show that R is a binary relation on N, which is neither reflexive nor symmetric. Show that R is transitive.

Let A = (1, 2, 3} and B = {4} How many relations can be defined from A to B.

Let R = {(x, x^{2}) : x is a prime number less than 10}.

**(i) **Write R in roster form.

**(ii)** Find dom (R) and range (R).

If A = {5} and B = {5, 6}, write down all possible subsets of A × B.