The relation R is given by:

R = {(x, y): y = x + 5, x is a natural number less than 4, x, y ∈ N}

The natural numbers less than 4 are 1, 2, and 3.

So,

R = {(1, 6), (2, 7), (3, 8)}

Now,

The domain of R is the set of all first elements of the ordered pairs in the relation.

Hence, Domain of R = {1, 2, 3}

The range of R is the set of all second elements of the ordered pairs in the relation.

Hence, Range of R = {6, 7, 8}

Answered by Abhisek | 11 months agoLet R = {(a, b) : a, b, ϵ N and a < b}.Show that R is a binary relation on N, which is neither reflexive nor symmetric. Show that R is transitive.

Let A = (1, 2, 3} and B = {4} How many relations can be defined from A to B.

Let R = {(x, x^{2}) : x is a prime number less than 10}.

**(i) **Write R in roster form.

**(ii)** Find dom (R) and range (R).

If A = {5} and B = {5, 6}, write down all possible subsets of A × B.