Let A = {x, y, z} and B = {1, 2}. Find the number of relations from A to B.

Asked by Pragya Singh | 1 year ago |  66

##### Solution :-

The facts provided to us are, A {x, y, z} and B {1, 2}  . Now, we will try to find out the Cartesian product of these to sets,

A × B = {(x, 1), (x, 2), (y, 1), (y, 2), (z, 1), (z, 2)}

As n(A × B) = 6, the number of subsets of A × B will be 26.

Thus, the number of relations from A to B is 26.

Answered by Abhisek | 1 year ago

### Related Questions

#### Let R = {(a, b) : a, b, ϵ N and a < b}.Show that R is a binary relation on N

Let R = {(a, b) : a, b, ϵ N and a < b}.Show that R is a binary relation on N, which is neither reflexive nor symmetric. Show that R is transitive.

#### Let A = (1, 2, 3} and B = {4} How many relations can be defined from A to B.

Let A = (1, 2, 3} and B = {4} How many relations can be defined from A to B.

#### Let R = {(x, x2) : x is a prime number less than 10}.

Let R = {(x, x2) : x is a prime number less than 10}.

(i) Write R in roster form.

(ii) Find dom (R) and range (R).