The given relation f is defined as:
It is seen that, for 0 ≤ x < 3,
f(x) = x2 and for 3 < x ≤ 10,
f(x) = 3x
Also, at x = 3
f(x) = 32 = 9 or f(x) = 3 × 3 = 9
i.e., at x = 3, f(x) = 9 [Single image]
Hence, for 0 ≤ x ≤ 10, the images of f(x) are unique.
Therefore, the given relation is a function.
Now,
In the given relation g is defined as
It is seen that, for x = 2
g(x) = 22 = 4 and g(x) = 3 × 2 = 6
Thus, element 2 of the domain of the relation g corresponds to two different images i.e., 4 and 6.
Therefore, this relation is not a function.
Answered by Pragya Singh | 1 year agoLet R = {(a, b) : a, b, ϵ N and a < b}.Show that R is a binary relation on N, which is neither reflexive nor symmetric. Show that R is transitive.
Let A = {3, 4, 5, 6} and R = {(a, b) : a, b ϵ A and a
(i) Write R in roster form.
(ii) Find: dom (R) and range (R)
(iii) Write R–1 in roster form
Let A = (1, 2, 3} and B = {4} How many relations can be defined from A to B.
Let R = {(x, x2) : x is a prime number less than 10}.
(i) Write R in roster form.
(ii) Find dom (R) and range (R).
If A = {5} and B = {5, 6}, write down all possible subsets of A × B.