Find the domain and the range of the real function f defined by f(x) = \( \sqrt{(x – 1)}\).

Asked by Abhisek | 1 year ago |  147

1 Answer

Solution :-

We have the given function as,f(x) = \( \sqrt{x-1}\)

Clearly, the term inside the root sign must be non-negative.

So, the function is valid for all values of x ≥ 1 .

Thus, the domain of the function will be, [1, ∞) .

Now, again, for x ≥ 1, the value of the function will always be greater than or equal to zero.

So, the range of the function is, [0, ∞).

Answered by Pragya Singh | 1 year ago

Related Questions

Let R = {(a, b) : a, b, ϵ N and a < b}.Show that R is a binary relation on N, which is neither reflexive nor symmetric. Show that R is transitive.

Class 11 Maths Relations and Functions View Answer

Let R = {(x, x2) : x is a prime number less than 10}.

(i) Write R in roster form.

(ii) Find dom (R) and range (R).

Class 11 Maths Relations and Functions View Answer