Given, f = {(1, 1), (2, 3), (0, –1), (–1, –3)}
And the function defined as, f(x) = ax + b
For (1, 1) ∈ f
We have, f(1) = 1
So, a × 1 + b = 1
a + b = 1 …. (i)
And for (0, –1) ∈ f
We have f(0) = –1
a × 0 + b = –1
b = –1
On substituting b = –1 in (i), we get
a + (–1) = 1 ⇒ a = 1 + 1 = 2.
Therefore, the values of a and b are 2 and –1, respectively.
Answered by Pragya Singh | 1 year agoLet R = {(a, b) : a, b, ϵ N and a < b}.Show that R is a binary relation on N, which is neither reflexive nor symmetric. Show that R is transitive.
Let A = {3, 4, 5, 6} and R = {(a, b) : a, b ϵ A and a
(i) Write R in roster form.
(ii) Find: dom (R) and range (R)
(iii) Write R–1 in roster form
Let A = (1, 2, 3} and B = {4} How many relations can be defined from A to B.
Let R = {(x, x2) : x is a prime number less than 10}.
(i) Write R in roster form.
(ii) Find dom (R) and range (R).
If A = {5} and B = {5, 6}, write down all possible subsets of A × B.