Let f = {(1, 1), (2, 3), (0, –1), (–1, –3)} be a function from Z to Z defined by f(x) = ax + b, for some integers a, b. Determine a, b.

Asked by Abhisek | 1 year ago |  139

1 Answer

Solution :-

Given, f = {(1, 1), (2, 3), (0, –1), (–1, –3)}

And the function defined as, f(x) = ax + b

For (1, 1) ∈ f

We have, f(1) = 1

So, a × 1 + b = 1

a + b = 1 …. (i)

And for (0, –1) ∈ f

We have f(0) = –1

a × 0 + b = –1

b = –1

On substituting b = –1 in (i), we get

a + (–1) = 1 ⇒ a = 1 + 1 = 2.

Therefore, the values of a and b are 2 and –1, respectively.

Answered by Pragya Singh | 1 year ago

Related Questions

Let R = {(a, b) : a, b, ϵ N and a < b}.Show that R is a binary relation on N, which is neither reflexive nor symmetric. Show that R is transitive.

Class 11 Maths Relations and Functions View Answer

Let R = {(x, x2) : x is a prime number less than 10}.

(i) Write R in roster form.

(ii) Find dom (R) and range (R).

Class 11 Maths Relations and Functions View Answer