First we have to arrange the given observations into ascending order,
36, 42, 45, 46, 46, 49, 51, 53, 60, 72.
The number of observations is 10
Then,
Median = \(\dfrac{(\dfrac{10}{2})^{th}observation+(\dfrac{10}{2})^{th}observation}{2} \)
(\( \dfrac{10}{2}\))th observation = 5th = 46
(\( \dfrac{10}{2}\))+ 1)th observation = 5 + 1
= 6th = 49
Median = \(\dfrac{(46 + 49)}{2}\)
= 95
= 47.5
So, the absolute values of the respective deviations from the median, i.e., |xi – M| are
11.5, 5.5, 2.5, 1.5, 1.5, 1.5, 3.5, 5.5, 12.5, 24.5
Thus, the required mean deviation about the median is
\( \displaystyle\sum_{i=1}^{10} f_i |X_i-M|=70\)
Mean Deviation,
\( MD(M) = \dfrac{1}{10} \displaystyle\sum_{i=1}^{10} |X_i-M|\)
= \( \dfrac{1}{10}\times 70\)
= 7
So, the mean deviation about the median for the given data is 7.
Answered by Abhisek | 1 year agoFind the mean deviation from the mean and from a median of the following distribution:
Marks | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
No. of students | 5 | 8 | 15 | 16 | 6 |
The age distribution of 100 life-insurance policy holders is as follows
Age (on nearest birthday) | 17-19.5 | 20-25.5 | 26-35.5 | 36-40.5 | 41-50.5 | 51-55.5 | 56-60.5 | 61-70.5 |
No. of persons | 5 | 16 | 12 | 26 | 14 | 12 | 6 | 5 |
Compute mean deviation from mean of the following distribution:
Marks | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 | 80-90 |
No. of students | 8 | 10 | 15 | 25 | 20 | 18 | 9 | 5 |
Find the mean deviation from the mean for the following data:
Classes | 95-105 | 105-115 | 115-125 | 125-135 | 135-145 | 145-155 |
Frequencies | 9 | 13 | 16 | 26 | 30 | 12 |
Find the mean deviation from the mean for the following data:
Classes | 0-100 | 100-200 | 200-300 | 300-400 | 400-500 | 500-600 | 600-700 | 700-800 |
Frequencies | 4 | 8 | 9 | 10 | 7 | 5 | 4 | 3 |