The three examples of sentences which are not statements, are as follows:

**(i)** She is a doctor.

It is not evident from the sentence as to whom ‘she’ is referred to. Hence, it is not a statement.

**(ii)** Geometry is difficult.

For some people, geometry can be easy and for some others, it can be difficult. Therefore, it is not a statement.

**(iii)** Where is he going?

This is a question in which it is not evident as to whom ‘he’ is referred to. Hence, it is not a statement.

Answered by Abhisek | 1 year agoDetermine whether the argument used to check the validity of the following statement is correct: p: “If x^{2} is irrational, then x is rational.” The statement is true because the number x^{2} = π^{2} is irrational, therefore x = π is irrational.

Which of the following statements are true and which are false? In each case give a valid reason for saying so

**(i)** p: Each radius of a circle is a chord of the circle.

**(ii) **q: The centre of a circle bisect each chord of the circle.

**(iii)** r: Circle is a particular case of an ellipse.

**(iv)** s: If x and y are integers such that x > y, then – x < – y.

**(v)** t: \( \sqrt{11}\) is a rational number.

By giving a counter example, show that the following statement is not true. p: “If all the angles of a triangle are equal, then the triangle is an obtuse angled triangle.”

Show that the following statement is true “The integer n is even if and only if n^{2} is even”

Show that the following statement is true by the method of the contrapositive p: “If x is an integer and x^{2} is odd, then x is also odd.”