\( \lim\limits_{x \to 0} \dfrac{sinax}{bx}\)
At x = 0, the value of the given function takes the form \( \dfrac{0}{0}\)
Now,
\( \lim\limits_{x \to 0} \dfrac{sin\;ax}{bx}\)
= \( \lim\limits_{x \to 0} \dfrac{sin\;ax}{ax}\times \dfrac{ax}{bx}\)
= \( \lim\limits_{x \to 0} \dfrac{sin\;ax}{ax}\times \dfrac{a}{b}\)
= \(\dfrac{a}{b} \lim\limits_{ax \to 0} \dfrac{sin\;ax}{ax} \)
= \( \dfrac{a}{b}\times 1\)
= \( \dfrac{a}{b}\)
Answered by Pragya Singh | 1 year ago