It is given that
\( \dfrac{x}{a}cos θ +\dfrac{y}{b}sinθ=1\)
We can write it as
bx cos θ + ay sin θ – ab = 0 ….. (1)
Here, the length of the perpendicular from point \( \sqrt{(a^2-b^2,0)}\) to line (1) is,
\( p_1=\dfrac{|bcos θ(\sqrt{a^2-b^2}+asin θ(0)-ab)|}{\sqrt{b^2cos^2θ+a^2sin^2θ}}\)
\( p_1=\dfrac{|bcos θ(\sqrt{a^2-b^2}-ab)|}{\sqrt{b^2cos^2θ+a^2sin^2θ}}\)
Similarly, the length of the perpendicular from point\( \sqrt{-(a^2-b^2,0)},\) to the line (2) is,
\( p_2=\dfrac{|bcos θ(-\sqrt{a^2-b^2}+asin θ(0)-ab)|}{\sqrt{b^2cos^2θ+a^2sin^2θ}}\)
\( p_2=\dfrac{|bcos θ(\sqrt{a^2-b^2}+ab)|}{\sqrt{b^2cos^2θ+a^2sin^2θ}}\)
Multiply equations (2) and (3),
From the formula,
\(\dfrac{|bcos θ(\sqrt{a^2-b^2}-(ab)^2)|}{b^2cos^2θ+a^2sin^2θ}\)
Square the numerator,
\( \dfrac{|b^2cos^2 θ(a^2-b^2)-a^2b^2|}{b^2cos^2θ+a^2sin^2θ}\)
Expand using formula
\( \dfrac{|a^2b^2cos^2 θ-b^4cos^2θ-a^2b^2|}{b^2cos^2θ+a^2sin^2θ}\)
Take out the common terms,
= \( b^2\dfrac{|a^2cos^2 θ-b^4cos^2θ-a^2|}{b^2cos^2θ+a^2sin^2θ}\)
= \( b^2\dfrac{|a^2cos^2 θ-b^2cos^2θ-a^2sin^2θ-a^2cos^2θ|}{b^2cos^2θ+a^2sin^2θ}\)
= Here,sin2θ+cos2θ=1 (trigonometric identity)
= \( b^2\dfrac{|-b^2cos^2 θ+a^2sin^2θ|}{b^2cos^2θ+a^2sin^2θ}\)
= \( b^2\dfrac{|b^2cos^2 θ+a^2sin^2θ|}{b^2cos^2θ+a^2sin^2θ}\)
Cancel common terms,
= \( b^2\)
Hence, proved that the product of the lengths of the perpendiculars drawn from the points
Find the angle between the line joining the points (2, 0), (0, 3) and the line x + y = 1.
Prove that the points (2, -1), (0, 2), (2, 3) and (4, 0) are the coordinates of the vertices of a parallelogram and find the angle between its diagonals.
Find the acute angle between the lines 2x – y + 3 = 0 and x + y + 2 = 0.
Find the angles between pairs of straight lines 3x – y + 5 = 0 and x – 3y + 1 = 0
Find the angles between pairs of straight lines 3x + y + 12 = 0 and x + 2y – 1 = 0