The odd integers from 1 to 2001 are 1, 3, 5, …1999, 2001.

It clearly forms a sequence in A.P.

Where, the first term, a = 1

Common difference, d = 2

Now,

a + (n -1)d = 2001

1 + (n-1)(2) = 2001

2n – 2 = 2000

2n = 2000 + 2 = 2002

n = 1001

We know,

S_{n} = \(
\dfrac{n}{2}[2a+(n-1)d]\)

= \( \dfrac{1001}{2}[2\times 1+(1001-1)\times 2]\)

= \( \dfrac{1001}{2}[2+1000 \times 2]\)

= \( \dfrac{1001}{2}\times 2002\)

= 1002001

Answered by Abhisek | 1 year agoConstruct a quadratic in x such that A.M. of its roots is A and G.M. is G.

Find the geometric means of the following pairs of numbers:

**(i) **2 and 8

**(ii) **a^{3}b and ab^{3}

**(iii) **–8 and –2

Insert 5 geometric means between \( \dfrac{32}{9}\) and \( \dfrac{81}{2}\).