First term, a = 25 and
Common difference, d = 22 – 25 = -3
Also given, sum of certain number of terms of the A.P. is 116
The number of terms be n
So, we have
Sn = \( \dfrac{n}{2}\) [2a + (n-1)d] = 116
116 = \( \dfrac{n}{2}\) [2(25) + (n-1)(-3)]
116 x 2 = n [50 – 3n + 3]
232 = n [53 – 3n]
232 = 53n – 3n2
3n2 – 53n + 232 = 0
3n2 – 24n – 29n+ 232 = 0
3n(n – 8) – 29(n – 8) = 0
(3n – 29) (n – 8) = 0
Hence,
n =\( \dfrac{29}{3}\) or n = 8
As n can only be an integral value, n = 8
Thus, 8th term is the last term of the A.P.
a8 = 25 + (8 – 1)(-3)
= 25 – 21
= 4
Answered by Abhisek | 1 year agoConstruct a quadratic in x such that A.M. of its roots is A and G.M. is G.
Find the geometric means of the following pairs of numbers:
(i) 2 and 8
(ii) a3b and ab3
(iii) –8 and –2
Insert 5 geometric means between \( \dfrac{32}{9}\) and \( \dfrac{81}{2}\).