Let’s assume A1, A2, A3, A4, and A5 to be five numbers between 8 and 26 such that 8, A1, A2, A3, A4, A5, 26 are in an A.P.
Here we have,
a = 8, b = 26, n = 7
So,
26 = 8 + (7 – 1) d
6d = 26 – 8 = 18
d = 3
Now,
A1 = a + d = 8 + 3 = 11
A2 = a + 2d = 8 + 2 × 3 = 8 + 6 = 14
A3 = a + 3d = 8 + 3 × 3 = 8 + 9 = 17
A4 = a + 4d = 8 + 4 × 3 = 8 + 12 = 20
A5 = a + 5d = 8 + 5 × 3 = 8 + 15 = 23
Therefore, the required five numbers between 8 and 26 are 11, 14, 17, 20, and 23.
Answered by Pragya Singh | 1 year agoConstruct a quadratic in x such that A.M. of its roots is A and G.M. is G.
Find the geometric means of the following pairs of numbers:
(i) 2 and 8
(ii) a3b and ab3
(iii) –8 and –2
Insert 5 geometric means between \( \dfrac{32}{9}\) and \( \dfrac{81}{2}\).