\( \displaystyle\sum_{k=1}^{11} (2+3k)=\displaystyle\sum_{k=1}^{11} (2)+\)
\( \displaystyle\sum_{k=1}^{11} (3k)=22\displaystyle\sum_{k=1}^{11} (3^k)\) .......(1)
We know that,
\( \displaystyle\sum_{k=1}^{11} (3^k)=3^1+3^2+....+3^{11}\)
This sequence \( 3,,3^2,3^3....3^{11}\) forms a G.P. Therefore,
\( s_n=\dfrac{a(1-r^n)}{1-r}\)
Substituting the values to the above equation we get,
\( s_n=\dfrac{3[(3)^{11}-1]}{3-1}\)
\( s_n=\dfrac{3}{2}(3^{11}-1)\)
Therefore,
\( \displaystyle\sum_{k=1}^{11} (3^k)=\dfrac{3}{2}(3^{11}-1)\)
Substitute this value in equation (1).
\( \displaystyle\sum_{k=1}^{11} (2+3k)=22+\dfrac{3}{2}(3^{11}-1)\)
Answered by Abhisek | 1 year agoConstruct a quadratic in x such that A.M. of its roots is A and G.M. is G.
Find the geometric means of the following pairs of numbers:
(i) 2 and 8
(ii) a3b and ab3
(iii) –8 and –2
Insert 5 geometric means between \( \dfrac{32}{9}\) and \( \dfrac{81}{2}\).