Given series is 12 + (12 + 22) + (12 + 22 + 32 ) + …
Finding the nth term, we have
an = (12 + 22 + 32 +…….+ n2)
= \( \dfrac{n(n+1)(n+1)}{6}\)
= \( \dfrac{n(2n^2+3n+1)}{6}\)
= \( \dfrac{2n^2+3n^2+n}{6}\)
= \( \dfrac{1}{3}n^3+\dfrac{1}{2}n^2+\dfrac{1}{6}n\)
The sum of n terms of a series is given by the equation
\( S_n= \displaystyle\sum_{k=1}^{n}a_k\)
The sum of n terms of the given series is
\( S_n= \displaystyle\sum_{k=1}^{n}= (\dfrac{1}{3}k^3+\dfrac{1}{2}k^2+\dfrac{1}{6}k)\)
\( \dfrac{1}{3}\displaystyle\sum_{k=1}^{n}=k^3+\dfrac{1}{2}\displaystyle\sum_{k=1}^{n}k^2+\dfrac{1}{6}\displaystyle\sum_{k=1}^{n}k\)
\( \dfrac{1}{3}\dfrac{n^2(n+1)^2}{(2)^2}+\dfrac{1}{2}\times \dfrac{n(n+1)(2n+1)}{6}\)
\(+ \dfrac{1}{6}\times \dfrac{n(n+1)}{2}\)
\( \dfrac{n(n+1)}{6}[\dfrac{n(n+1)}{2}+\dfrac{(2n+1)}{2}+\dfrac{1}{2}]\)
\( \dfrac{n(n+1)}{6}[\dfrac{n^2+n+2n+2}{2}]\)
\( \dfrac{n(n+1)}{6}[\dfrac{(n+1)+2(n+1)}{2}]\)
\( \dfrac{n(n+1)}{6}[\dfrac{(n+1)+(n+2)}{12}]\)
= \( \dfrac{n(n+1)(n+2)}{12}\)
Answered by Pragya Singh | 1 year agoConstruct a quadratic in x such that A.M. of its roots is A and G.M. is G.
Find the geometric means of the following pairs of numbers:
(i) 2 and 8
(ii) a3b and ab3
(iii) –8 and –2
Insert 5 geometric means between \( \dfrac{32}{9}\) and \( \dfrac{81}{2}\).