The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an arithmetic progression. Find the numbers.

Asked by Abhisek | 1 year ago |  64

1 Answer

Solution :-

Let’s consider the three numbers in G.P. to be as a, ar, and ar2.

Then from the question, we have

a + ar + ar2 = 56

a (1 + r + r2) = 56

\( a=\dfrac{56}{1+r+r^2}\).........(1)

Also, given

a – 1, ar – 7, ar2 – 21 forms an A.P.

So, (ar – 7) – (a – 1) = (ar2 – 21) – (ar – 7)

ar – a – 6 = ar– ar – 14

ar– 2ar + a = 8

ar– ar – ar + a = 8

a(r+ 1 – 2r) = 8

a (r – 1)2 = 8 … (2)

\(\dfrac{56}{1+r+r^2}(r-1)^2=8\)

7(r2 – 2r + 1) = 1 + r + r2

7r2 – 14 r + 7 – 1 – r – r2 = 0

6r2 – 15r + 6 = 0

6r2 – 12r – 3r + 6 = 0

6r (r – 2) – 3 (r – 2) = 0

(6r – 3) (r – 2) = 0

r = 2, \( \dfrac{1}{2}\)

When r = 2, a = 8

When r = \( \dfrac{1}{2}\), a = 32

Thus,

When r = 2, the three numbers in G.P. are 8, 16, and 32.

When r = \( \dfrac{1}{2}\), the three numbers in G.P. are 32, 16, and 8.

Therefore in either case, the required three numbers are 8, 16, and 32.

Answered by Pragya Singh | 1 year ago

Related Questions

Construct a quadratic in x such that A.M. of its roots is A and G.M. is G.

Class 11 Maths Sequences and Series View Answer

If a is the G.M. of 2 and \( \dfrac{1}{4}\) find a.

Class 11 Maths Sequences and Series View Answer

Find the geometric means of the following pairs of numbers:

(i) 2 and 8

(ii) a3b and ab3

(iii) –8 and –2

Class 11 Maths Sequences and Series View Answer

Insert 5 geometric means between \( \dfrac{32}{9}\) and \( \dfrac{81}{2}\).

Class 11 Maths Sequences and Series View Answer