Given \( a(\dfrac{1}{b}+\dfrac{1}{c}), b(\dfrac{1}{c}+\dfrac{1}{a}), c(\dfrac{1}{a}+\dfrac{1}{b}),\) are in A.P.
Therefore,
\( b(\dfrac{1}{c}+\dfrac{1}{a}), -a(\dfrac{1}{b}+\dfrac{1}{c})\)
= \( c(\dfrac{1}{a}+\dfrac{1}{b})-b(\dfrac{1}{c}+\dfrac{1}{a})\)
\( \dfrac{b(a+c)}{ac}-\dfrac{a(b+c)}{bc}\)
= \( \dfrac{c(a+b)}{ab}-\dfrac{b(a+c)}{ac}\)
= \( \dfrac{b^2a+b^2c-a^2b-a^2c}{abc}\)
= \( \dfrac{c^2a+c^2b-b^2a-b^2c}{abc}\)
= \( b^2a+b^2c-a^2b-a^2c\)
= \( c^2a+c^2b-b^2a-b^2c\)
= \( ab(b-a)+c(b^2-a^2)\)
\( =a(c^2-b^2)bc(c-b)\)
\( ab(b-a)+c(b-a)(b+a)\)
\( = a(c-b)(c+b)+bc(c-b)\)
= \( (b-a)(ab+cb+ca)\)
\( =(c-b)(ac+ab+bc)\)
= \( b-a=c-b\)
Therefore, a, b and c are in A.P.
Answered by Pragya Singh | 1 year agoConstruct a quadratic in x such that A.M. of its roots is A and G.M. is G.
Find the geometric means of the following pairs of numbers:
(i) 2 and 8
(ii) a3b and ab3
(iii) –8 and –2
Insert 5 geometric means between \( \dfrac{32}{9}\) and \( \dfrac{81}{2}\).