Given that,
3x – 7 > 5x – 1
Now by adding 7 to both the sides, we get
3x – 7 +7 > 5x – 1 + 7
3x > 5x + 6
Again by subtracting 5x from both the sides,
3x – 5x > 5x + 6 – 5x
-2x > 6
Dividing both sides by -2 to simplify we get
\( \dfrac{-2x}{-2}<\dfrac{6}{-2}\)
x < -3
The solutions of the given inequality are defined by all the real numbers less than -3.
Hence the required solution set is (-∞, -3)
Answered by Pragya Singh | 1 year agoSolve each of the following in equations and represent the solution set on the number line \( \dfrac{5x}{4}-\dfrac{4x-1}{3}>1,\) where x ϵ R.
Solve each of the following in equations and represent the solution set on the number line.\( \dfrac{5x-8}{3}\geq \dfrac{4x-7}{2}\), where x ϵ R.
Solve each of the following in equations and represent the solution set on the number line. 3 – 2x ≥ 4x – 9, where x ϵ R.
Solve each of the following in equations and represent the solution set on the number line. 3x – 4 > x + 6, where x ϵ R.
Solve each of the following in equations and represent the solution set on the number line. 5x + 2 < 17, where
(i) x ϵ Z,
(ii) x ϵ R.