Let us assume x be the smaller of the two consecutive odd positive integers
Other integer is = x + 2
It is also given in the question that, both the integers are smaller than 10
x + 2 < 10
x < 8 … (i)
Also, it is given in the question that sum off two integers is more than 11
x + (x + 2) > 11
2x + 2 > 11
x > \( \dfrac{9}{2}\)
x > 4.5 … (ii)
Thus, from (i) and (ii) we have x is an odd integer and it can take values 5 and 7
Hence, possible pairs are (5, 7) and (7, 9)
Answered by Abhisek | 1 year agoSolve each of the following in equations and represent the solution set on the number line \( \dfrac{5x}{4}-\dfrac{4x-1}{3}>1,\) where x ϵ R.
Solve each of the following in equations and represent the solution set on the number line.\( \dfrac{5x-8}{3}\geq \dfrac{4x-7}{2}\), where x ϵ R.
Solve each of the following in equations and represent the solution set on the number line. 3 – 2x ≥ 4x – 9, where x ϵ R.
Solve each of the following in equations and represent the solution set on the number line. 3x – 4 > x + 6, where x ϵ R.
Solve each of the following in equations and represent the solution set on the number line. 5x + 2 < 17, where
(i) x ϵ Z,
(ii) x ϵ R.